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Uniformly valid asymptotic solutions for linearized disturbances valid in a finite 
region containing the critical point u = c are developed using the method of 
multiple scales for a given isoenergetic basic flow. While uniformity of approxi- 
mation will certainly improve the quantitative accuracy of a typical computation 
of stability characteristics of the flow, a major feature of such solutions is that 
they afford a more accurate description of the behaviour of the linearized 
disturbances in the neighbourhood of the critical point u = c. 

1. Introduction 
In  order to study the behaviour of linearized disturbances in parallel viscous 

compressible flows one must follow the solution of a linear and homogeneous 
system of equations which contains time t only through derivatives with respect 
to t ,  so that solutions containing an exponential factor et may be expected. In  the 
normal-mode theory, each disturbance is resolved into dynamically independent 
wave components, and each mode of perturbation is assumed to be of the form 
exp [ia(x - c t ) ]  times an amplitude function of y, where y is the distance perpendi- 
cular to the flow, x the distance along the flow and c the complex wave velocity; 
c = c,+ic,, where c, and c, are real, c, > 0 implies instability of the perturbed 
mean flow, c, < 0 implies stability and c, = 0 implies neutral stability. Under 
the approximations of parallel flow, the equations of continuity, motion, energy 
and state yield upon reduction five linear differential equations for the amplitudes 
of the linearized disturbance velocity components, pressure, density and tem- 
perature (see Lees & Lin 1946): 

i (u-c)y+p($I+i f )+p'$ = 0, 

U 
.p[i(u-c)O+T'$] = -a@- l)pT($'+if)+-(O't-a20) 

RL 
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n ~ e  
F=PST* 

Here we have considered the simplest model of a compressible fluid, viz. one 
with a constant ratio of specific heats y, constant Prandtl number ,uc# (which 
we take to be unity), constant viscosity coefficient p and constant thermal 
conductivity k. I n  (1)-(5), u is the longitudinal component of the mean velocity, 
v the transverse component, iu the pressure, p the mean density and T the mean 
temperature. The disturbances are defined by 

where the subscript co denotes the conditions in the free stream, R is the gas 
constant, L a characteristic length and primes denote differentiation with 
respect to y. 

2. Asymptotic solutions 
The exact solutions for the disturbances for a general basic compressible flow 

have not been obtained. The situation of primary interest is when one of the 
parameters (say RL) is large, and most of the solutions are constructed within the 
framework of this feature. Thus the commonly known solutions are valid either 
in the immediate neighbourhood of the critical point u = c or far away from it. 

For aR, 9 1, the formal asymptotic solutions are (see Morawetz 1954) 

where yc is the critical point, at which u(y) = c .  It is known from the inviscid 
theory that one of the formal asymptotic solutions of the form (8) (denoted by 

is regular, while another (denoted by $2) exhibits a logarithmic singularity a t  
the critical point y = yc (see Shivamoggi ( 1 9 7 6 ~ )  for a comprehensive inviscid 
theory of the stability of parallel compressible flows). The singularity in this 
asymptotic solution and the asymptotic solution of the type (9) shows that they 
can be valid only if the immediate neighbourhood of the critical point is excluded. 

All these multi-valued expressions are valid asymptotic solutions in a region 
which, in the neighbourhood of the point ye in the complex y plane, is divided into 
three sectors by the Stokes lines, given by 

Re { /i!p(u - c)]* dy = 0, 1 
and it is known that a true solution 42(y) exhibiting the inviscid behaviour 
$i)(y) in two of the sectors will show a dominant viscous behaviour in the 
remaining sector. 
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The asymptotic solution valid in the neighbourhood of the critical point is 
obtained by introducing a new variable (see Lees & Lin 1946) 

7 = (y-yc)/6, 6 = (aR,)-) < I. (11) 

(12) 

One then attempts to obtain the solution as a power series in E of the form 

6) = EXl(7) + E2X2(7) + O(C3) 

which is valid for finite values of 7. 
The formal identification of (12) with (8) and (9) in the asymptotic limit (which 

is necessary from a heuristic point of view) raises mathematical difficulties in 
that it is not known apriori whether (8), (9) and (12) have overlapping domains 
of validity. Besides, in many cases in practice, one boundary corresponds to 
finite y - yc while the other corresponds to finite 7. Then neither (8), (9) nor (12) 
is adequate for solving the characteristic-value problem. It is therefore desirable 
to develop uniformly valid asymptotic solutions for the amplitudes of the 
linearized disturbances in a finite region containing the critical point, which we 
accomplish here by using the method of multiple scales for a given basic com- 
pressible flow. Two further applications of such uniformly valid asymptotic 
solutions are (i) in calculating the amplitude distributions for linearized oscilla- 
tions in parallel compressible flows (which is essential in studying the physical 
nature of such oscillations), where the commonly known solutions do not provide 
sufficient accuracy, and (ii) in developing the nonlinear theory for oscillations of 
finite amplitude, wherein it is essential to have a linear amplitude distribution 
with a uniformly extended domain of validity. More remarks will be made later, 
in the discussion. 

3. Asymptotic solutions using the method of multiple scales 
Consider an isoenergetic basic compressible flow with Ml < I : 

U = Y ,  T = I - L (  z ~ - l ) M 2 , ~ ~ ,  ~ = l + ~ ( ~ - l ) M q ~ ~ ,  p = 1 .  (13) 

Introduce two independent variables 

2 = i(y - c ) ,  6 = (aR& (14) 

(see Cole (1968) for a general outline of the method of multiple scales) and note that 

- =-+--  d a l a  
dz a2 c a t ,  

dz a 2  2 a 2  I a2 

dx2 a22 g azag 6 2 a p  

6 = (cIRL)-+ < 1, 

iA$, 6 + 4 4 Y  - 1 ) MI(t+, 6 + 4) + W$, 2: +f 1) 

-=-+--+-- 

where 
so that (1)-(5) become 

+ .“@ + (Y - 1) - $it2$, 6 + a$, z +f - it$)] + W3) = 0, (15) 



Now seek asymptotic expansions for f, $ y  n, y and 0 of the form 

I 
m m 

f ( z , E ;  €1 = z @%&,EL $ (z ,E ;  €1 = z €n+l$n(z,k),  
n-0 n-0 

m 

Syo+ABo = 0 
and 

From (21)-(27), one finds 
[a4/ak4 + AE aZ/agz] +o = 0, 

[a4/aE4 + AE az/ak21 $1 = i(Y - 1) M2,C[ - ( 1 - c) 90 + 2&0, 5 + E”0,55 - A-Vo, EgI 
- A#o, o: - Atdo, cz - 340, ga + 2G70 + %To, 5 

+iA-Yo,g[+ 3A-’yo,g. (29) 

Note that the zeroth-order equation (28) reduces in the limit Ml -+ 0 to that 
deduced by Tam (1968) for the case of an incompressible fluid. The solutions of 
(28) are integrals of Airy functions. Alternatively, they may be expressed (see 
Jeffreys 1962, p. 29) as 

pk(~) = S t-zexp (ct + i t 3 1  dt, (30) 
Lk 
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FIQURE 1. Contours for Airy integrals in t plane. 

where g = A-sE and Lk is any one of the contours shown in figure 1. The solutions 
F1, .E2 and F3 are linearly independent; however 

.El+ F! + 273 = 270, 

where F0 corresponds to a closed contour Lo (not shown in the figure) around the 
origin. Thus one writes 

(31) $O(ZY 6) = A,@) Fl(6) + %(z) FZ(6) +CO(Z) 6+ Do(z) 

if the boundaries where the boundary conditions are to be imposed lie respec- 
tively in sectors S, and S, in figure 2. 

It may be seen that the asymptotic solution (31) has coefficients which are 
functions of the unstretched variable z = i(y - c). In  order to determine these 
functions of z, one imposes the condition that the asymptotic expansion (20) be 
uniformly valid, i.e. the terms of the asymptotic expansion (20) must satisfy 

4 J z ,  ‘3 = O(A-l(zY E l )  
uniformly in z, as e --f 0, the same being true for their partial derivatives. This is 
accomplished by removing the secular terms in the next higher-order equation, 
viz. (29). 

Inspection of (29) using (31) shows that in order to remove the secular terms 
one requires I (32) 

A&z) = B&) = C&) = 0, 

D;(z) + i(y - 1) M ~ c (  I - C) h-lDo(z) = 0, 

(33) I or A&) = A,, ~ o ( z )  = B O Y  = Go, 
Do(z) = Bo+Doexp[-i(y- I)Mqc(l -c)A-lz]. 
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FIGURE 2. Asymptotic domains of Airy integrals in 7 plane. 

Thus one finds a uniformly valid solution 

4 o ( z , 8  = ~ 0 ~ , ~ 5 ~ + ~ 0 ~ ~ ~ 5 ~ + ~ 0 5 + + 0  

+D,exp [ - i(y - 1) M;c( l  - c )  A-lz]. (34) 

The asymptotic forms of Fk(c) have been given by Tam: 

Fk(c) N - id( - i)kexp ( - i3@) (i3@)-*(i<$)+(A+1) 

x [i+O(I{l-t)] as 151 -+a, A = -2. (35) 

Tam further deduced that in each of the sectors sk, k s 1,2 ,3 ,  Fk(C) is dominated 
by the other two functions. 

4. Discussion 
While the lack of uniformity of approximation in the conventional asymptotic 

solutions (8), (9) and (12) will certainly be rectified by any kind of uniformly valid 
solution, the extent of the usefulness of such a solution will still be determined by 
the convenience of its form. This would not be a serious issue if one were merely 
confronted with the computation of the stability characteristics of the flow. 
However, the primary purpose of the theory of hydrodynamic stability is to 
focus attention on the mechanism of transition of laminar flow into turbulence. I n  
this context a detailed knowledge of the behaviour of the linearized disturbances 
in the neighbourhood of the critical point u = c (which in the viscous case can be 
shown to be a turning point of the mathematical problem) has considerable 
heuristic value. This also has other important applications: this author (1976b) 
has investigated the influence of ‘subsonic ’ disturbances present in a high-speed 
gas stream upon the development of the surface waves generated in a liquid layer 
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adjacent to the gas stream. It was found in this case that energy is transferred 
from the gas stream to the surface waves predominantly by the Fourier com- 
ponent of the gas pressure field in phase with the wavy interface, and the calcula- 
tion of this energy transfer is facilitated by noting that it is primarily determined 
by the conditions a t  the critical point u = c. 

The author is grateful to the referee for his constructive criticism. 
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generation of surface waves in a liquid layer adjacent to a high-speed gas stream. 


